2.顺序表的基本形式

图a表示的是顺序表的基本形式,数据元素本身连续存储,每个元素所占的存储单元大小固定相同,元素的下标是其逻辑地址,而元素存储的物理地址(实际内存地址)可以通过存储区的起始地址Loc (e0)加上逻辑地址(第i个元素)与存储单元大小(c)的乘积计算而得,即:

Loc(ei) = Loc(e0) + c*i

故,访问指定元素时无需从头遍历,通过计算便可获得对应地址,其时间复杂度为O(1)。

如果元素的大小不统一,则须采用图b的元素外置的形式,将实际数据元素另行存储,而顺序表中各单元位置保存对应元素的地址信息(即链接)。由于每个链接所需的存储量相同,通过上述公式,可以计算出元素链接的存储位置,而后顺着链接找到实际存储的数据元素。注意,图b中的c不再是数据元素的大小,而是存储一个链接地址所需的存储量,这个量通常很小。

图b这样的顺序表也被称为对实际数据的索引,这是最简单的索引结构。

数组要从0开始编号,而不是从1开始呢?

从数组存储的内存模型上来看,“下标”最确切的定义应该是“偏移(offset)”。前面也讲到,如果用 a 来表示数组的首地址,a[0] 就是偏移为 0 的位置,也就是首地址,a[k] 就表示偏移 k 个 type_size 的位置,所以计算 a[k] 的内存地址只需要用这个公式:这里就

a[k]_address = base_address + k * type_size

但是,如果数组从 1 开始计数,那我们计算数组元素 a[k] 的内存地址就会变为:

a[k]_address = base_address + (k-1)*type_size

对比两个公式,我们不难发现,从 1 开始编号,每次随机访问数组元素都多了一次减法运算,对于 CPU 来说,就是多了一次减法指令。数组作为非常基础的数据结构,通过下标随机访问数组元素又是其非常基础的编程操作,效率的优化就要尽可能做到极致。所以为了减少一次减法操作,数组选择了从 0 开始编号,而不是从 1 开始。

基本顺序表与元素外置顺序表

顺序表的结构

一个顺序表的完整信息包括两部分,一部分是表中的元素集合,另一部分是为实现正确操作而需记录的信息,即有关表的整体情况的信息,这部分信息主要包括元素存储区的容量和当前表中已有的元素个数两项。

顺序表的两种基本实现方式

图a为一体式结构,存储表信息的单元与元素存储区以连续的方式安排在一块存储区里,两部分数据的整体形成一个完整的顺序表对象。

一体式结构整体性强,易于管理。但是由于数据元素存储区域是表对象的一部分,顺序表创建后,元素存储区就固定了。

图b为分离式结构,表对象里只保存与整个表有关的信息(即容量和元素个数),实际数据元素存放在另一个独立的元素存储区里,通过链接与基本表对象关联。

元素存储区替换

一体式结构由于顺序表信息区与数据区连续存储在一起,所以若想更换数据区,则只能整体搬迁,即整个顺序表对象(指存储顺序表的结构信息的区域)改变了。

分离式结构若想更换数据区,只需将表信息区中的数据区链接地址更新即可,而该顺序表对象不变。

元素存储区扩充

采用分离式结构的顺序表,若将数据区更换为存储空间更大的区域,则可以在不改变表对象的前提下对其数据存储区进行了扩充,所有使用这个表的地方都不必修改。只要程序的运行环境(计算机系统)还有空闲存储,这种表结构就不会因为满了而导致操作无法进行。人们把采用这种技术实现的顺序表称为动态顺序表,因为其容量可以在使用中动态变化。

扩充的两种策略 – 每次扩充增加固定数目的存储位置,如每次扩充增加10个元素位置,这种策略可称为线性增长。 – 特点:节省空间,但是扩充操作频繁,操作次数多。 – 每次扩充容量加倍,如每次扩充增加一倍存储空间。 – 特点:减少了扩充操作的执行次数,但可能会浪费空间资源。以空间换时间,推荐的方式。

顺序表的操作

增加元素

a. 尾端加入元素,时间复杂度为O(1)

b. 非保序的加入元素(不常见),时间复杂度为O(1)

c. 保序的元素加入,时间复杂度为O(n) # 保序是插入元素,原先的顺序不变

删除元素

a. 删除表尾元素,时间复杂度为O(1) b. 非保序的元素删除(不常见),时间复杂度为O(1) c. 保序的元素删除,时间复杂度为O(n)

Python中的顺序表

Python中的list和tuple两种类型采用了顺序表的实现技术,具有前面讨论的顺序表的所有性质。

tuple是不可变类型,即不变的顺序表,因此不支持改变其内部状态的任何操作,而其他方面,则与list的性质类似。

list的基本实现技术

Python标准类型list就是一种元素个数可变的线性表,可以加入和删除元素,并在各种操作中维持已有元素的顺序(即保序),而且还具有以下行为特征:

  • 基于下标(位置)的高效元素访问和更新,时间复杂度应该是O(1);

为满足该特征,应该采用顺序表技术,表中元素保存在一块连续的存储区中。

  • 允许任意加入元素,而且在不断加入元素的过程中,表对象的标识(函数id得到的值)不变。

为满足该特征,就必须能更换元素存储区,并且为保证更换存储区时list对象的标识id不变,只能采用分离式实现技术。

在Python的官方实现中,list就是一种采用分离式技术实现的动态顺序表。这就是为什么用list.append(x) (或 list.insert(len(list), x),即尾部插入)比在指定位置插入元素效率高的原因。

在Python的官方实现中,list实现采用了如下的策略:在建立空表(或者很小的表)时,系统分配一块能容纳8个元素的存储区;在执行插入操作(insert或append)时,如果元素存储区满就换一块4倍大的存储区。但如果此时的表已经很大(目前的阀值为50000),则改变策略,采用加一倍的方法。引入这种改变策略的方式,是为了避免出现过多空闲的存储位置。

给TA打赏
共{{data.count}}人
人已打赏
开发

jQuery基本操作1

2023-9-11 18:07:25

开发

1.算法引入

2023-9-11 18:08:15

0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索